Traditional Methods

Lesson 9/16 | Study Time: 0 Min

DATA SCIENCE PREDICTING  the future

Predictive  analytics  in  data  science  rest  on  the  shoulders  of explanatory data analysis.
In  fact,  everything  is  connected.  Once  the  BI  reports  and dashboards
have been prepared and insights extracted from them  this information becomes the basis for predicting
future values. And the accuracy of these predictions
lies in the methods used.





Recall the distinction between traditional data and big data in data  science.  A  similar  distinction  can  be  made regarding predictive
analytics and their methods: traditional data science methods  vs.  Machine  Learning.  One  deals  primarily  with traditional data, and the other with big
data.

TRADITIONAL METHODS
Traditional  forecasting  methods  in  this comprise  the  classical  statistical  methods  for forecasting    linear  regression  analysis,  logistic regression
analysis, clustering, factor analysis, and time series.




The output of each of these feeds into the more sophisticated machine learning analytics.


Some in the data science industry refer to several of these methods as machine  learning  too,  but  in  this machine learning refers to newer, smarter, better methods, such as deep
learning.