Machine Learning Uses

Lesson 12/16 | Study Time: 0 Min


Fraud detection:

With machine learning and supervised learning in particular, banks can take past data, label the transactions  as  legitimate,  or  fraudulent,  and train models to detect fraudulent activity.

When these   models   detect   even   the   slightest probability of theft, they flag the transactions, and prevent the fraud in real time.

Client retention:

With  machine  learning  algorithms,  corporate organizations can know which customers may purchase  goods  from  them. 
This  means  the store can offer discounts and a ‘personal touch’ in an efficient way, minimizing marketing costs and maximizing profits. A couple of prominent names come to mind: Google, and Amazon.

WHO  USES
MACHINE
LEARNING
As we mentioned already, the data scientist is deeply involved in designing machine learning algorithms,  but  there  is  another  star  on  this stage.




The machine learning engineer. This is the specialist who is looking for ways to apply state of the
art computational models developed in the field of machine learning into solving complex problems such as business tasks, data science tasks, computer vision, self-driving cars,
robotics, and so on.


Artificial Intelligence

 Andrew Ng,
co-founder of Google Brain and
former Chief Scientist at Baidu, defines artificial intelligence as
“a
huge set of tools for making computers behave intelligently.” This definition casts a
wide net and
it’s worth providing some examples to make clear what “behaving intelligently” means:





Voice assistants, such as
Siri


Recommendation systems, such as
Netflix


Self-driving cars


Drones that fly over fields and
capture footage to optimize crop yield


Google Search


Surfacing algorithms, such as
those employed by Twitter and
Facebook, that decide what content to show you in your feed