Estimators and Estimates

Lesson 11/26 | Study Time: 0 Min

Estimators

Broadly, an estimator is a
mathematical function that approximates a population parameter
depending only on sample information.



 



Examples of estimators
and the corresponding parameters:














Estimators have two important properties:

 

            .   Bias







The expected value of an unbiased estimator is the
population parameter.
The bias in this case
is
0. If the expected
value of an

estimator is (parameter + b), then the bias is b.

 

                    . Efficiency

The
most efficient estimator is the
one
with the smallest variance.



Estimates

An estimate is the output that you
get from the estimator (when you
apply the formula). There are two
types
of estimates: point estimates and
confidence interval estimates


Point estimatesA single
value. 
Examples:    • 1

• 5


• 122.67

• 0.32

          Confidence estimates - An interval. Examples:

                                                                                              •        
( 1 , 5 )

                                                                                               •        
( 12 , 33)

                                                                                         •        
( 221.78
, 745.66)


.( - 0.71 , 0.11)



Confidence intervals
are much more precise than point estimates.
That
is why
they are preferred when making



inferences